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The strictly finite range of the direct correIation function for a homogeneous 
nearest neughbor Ising chain is shown to persist in the presence of arbitrary 
site-dependent coupling constants and an arbitrary external field. A method is 
developed to examine the range of the direct correlation function for many- 
neighbor interactions. It is found from numerical examples that, in general, 
third-neighbor and higher interactions induce long-range direct correlations, as 
does the presence of a field in the second-neighbor case. 
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1. I N T R O D U C T I O N  

Among the various ultrasimplified models that have been investigated with 
a view toward understanding the structure of equilibrium statistical 
mechanics, the one-dimensional Ising model with nearest neighbor interac- 
tion stands out. It possesses a minimal number of degrees of freedom, can 
accept an arbitrary external field and remain solvable, Ill and serves as a 
fine test of approximation methods. If one had to choose a simple non- 
trivial property with respect to which it serves as an obvious prototype, 
this would probably be the strictly finite range of its associated direct 
correlation function. This is particularly significant because the direct 
correlation function, in addition to being a primary component of so many 
approximation methods, is also a primary tool for carrying out direct per- 
turbation expansions. 
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The question naturally arises as to whether the nearest neighbor 
aspect, normally implicit in the term "Ising model," is responsible for the 
striking simplicity of the direct correlation, or whether it represents but one 
of a hierarchy of conditions leading to equally simple correlation structure. 
This question recently took on added significance when Robert (2) showed, 
using the short-cut best known through the work of Stephenson, (3) that the 
direct correlation was also of the interaction range for next nearest 
neighbor (NNN) interactions (with no external field). One possible conjec- 
ture at this level would be that with pth-neighbor interaction, the direct 
correlation would have range p, but a moment's reflection shows that this 
cannot be: in the one-dimensional continuum limit--as the lattice spacing 
goes to zero the direct correlation function does not have the range of the 
interaction (4) (e.g., with hard core plus square well interaction). A weaker 
conjecture, with some heuristic justification (the order of the minimal 
transfer matrix is 2 p- 1; see Section 5), is that the range goes as 2 p- *, and 
the continuous counterexample would not hold in this case. 

In this paper, we will investigate the above question in some detail, via 
a succession of models of various characteristics, developing effective com- 
putational tools as needed. Our conclusion, put briefly, is that the trun- 
cated range peculiar to the nearest neighbor model--remaining valid with 
quite substantial generalization--indeed holds for the field-free second- 
neighbor model, but does not generally hold for anything beyond this. 

2. N E A R E S T  N E I G H B O R  I N T E R A C T I O N  

The theater of operations is best entered via the prototypical one- 
dimensional Ising model with nearest neighbor interaction alone, i.e., with 
Boltzmann factor 

N 

e r~(~0.~, ....... ")= l-[ eJ~ ~' (2.1) 
i = 1  

corresponding to free-spin boundary conditions. J is the (negative) interac- 
tion strength in units of kT, and each ~i = -+ 1. The corresponding partition 
function is 

where 

2 =  ~ e P~= (co I M N Io)) (2.2) 

6 , - - J  
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In terms of standard Pauli spin matrices 

M = e J + e - J ~ x ,  a=(10 

We will also need the spin expectations 

( o , )  = (col Mia~ MN- 

and the pair spin expectation 

where 
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I~o ) / F  (2.4) 

(aia,} = ~1Mia=MJ-ia:  MN- j  Ico}/~, j>~i 

= (col M~(a=Ma=) j - i  M N-j Ico)/~ (2.5) 

ozMoz = e J -  e JG x 

and find at once 

Since the eigenvalues of ax are _+ 1 and, except in (2.4), which vanishes by 
parity, only functions of cr x appear, computations are trivial: we simply use 

! 1 
f(crx) = ~ (1 + ax) f (1)  + ~  (l - ox) f ( -  1) 

Z = 2(2 cosh j)N 

( o , )  = 0  (2.7) 

( a i a j )  = (tanh J)J i, j~> i 

Our major interest will be in the spin spin correlation function, 

s ~ =  (a,o-j) - ( a , ) ( a j )  (2.8) 

and its reciprocal, the spin direct correlation, 

C , = ( S  1)i j (2.9) 

(Since o = 2 v -  1, where v is the site occupation number, these differ by a 
factor of 4 from the lattice gas structure factor and direct correlation 
function.) In the present case, we have, and readily compute, 

S~/= (tanh j ) l i -  jl 

Co.=-�89 for I i - j l  = 1 

= c o s h 2 J  for i = j r  N 

= cosh2 J for i = j = O o r N  

= 0 otherwise 

(2.10) 

(2.6) 

O1)=o• (2.3) 
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Thus, the range of C o �9 is 1, coinciding with the range of the force. If, on the 
other hand, one adopts periodic boundary conditions, 6 u = 0"0, the force is 
effectively of range N and the direct correlation is no longer of short range. 
It becomes so, however, as N--* o% in which case the expectations of (2.7) 
are impervious to boundary conditions, while 

( ' ~ p b c ) t i N =  (Tr M N )  I / N =  [ (2 co sh J)NJf - (2 sinh J)N] I/N __~ ,~IlN 

We will later take advantage of this fact, suitably extended. 

3. GENERALIZATION 

The short-range character of C is maintained even for site-dependent 
coupling, as is shown by a fairly straightforward argument. We locate each 
bond between two sites, Ji+ 1/2, and define the normalized transfer matrix 

1 ( e Ji+. /2 e Jl+l,2~ 1 (eJ/+l, 2 -~ e ji+I/2G.,r ) 
ri§ ~ Ji+ 1/2 ~Ji+l/2 ) = 2  (3.1) 

Since T reduces to a projection when J =  0, we can allow the system to 
become doubly infinite if Ji+ 1/2 ~ 0  as lil ~ oo. The boundary conditions 
are then irrelevant, and we choose them as periodic. We now have [Z  nor- 
malized to accord with (3.1)] 

Of course, 

S =  Tr l~ Tj+ v2= Tr I~ ( l + Gx) I~ cosh Jj+ l/2 
j i 

, } + ~  (1 - ax) l-[ sinh J/+ t/2 
/ 

= [ I  c o s h  Jr + ,,'2 
/ 

( G/> = O, and since 

1 
,e@. ~,2 _ e - S/* ~:2o-x) 

(3.2) 

then similarly, for i <  j, 

r , ,  ] 
i = " k > j  

./ l 

= [ I  cosh Jk+ 1/2 I1 sinh Jk+ 1/2 I~ cosh Jk+ 1/2 
k < i  k = i  k > i  

(3.3) 
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or [clearly S(i, i)= 1 - ( (T i )  2 =  1] 

j i 

S(i, j) = [ I  tanh Jk+ l/2 
k = 1  

It is convenient to define 

for i ~ j  (3.4) 

K~ = F[ tanh Jk + 1/2 
k < j  

(3.5) 

so that (3.4) translates to 

S ( i , j ) = K J K ,  for i<~j 

Thus, the spin-spin direct correlation, defined via 

(3.6) 

S(i, k) C(k, j) = c~ o 
k 

(3.7) 

satisfies 

5 ,  K7 C(k, j)  + Z C(k, j) = ,5~j 
k <~i k 

(3.8) 

The solution of (3.8) is found, after a certain amount of algebra, to be 

cti'i)=(k-7,1 K,+ 1 K ,  ;v,-7, K,. 

K, K, 1 C(i+ 1, i)= K,+, Ki " 
c ( i - 1 ,  i)= KT-~ K, ' , K, K77+, 

C(i , j )=O for ] i - j l  > 1 

(3.9) 

Therefore, the short-range character of C(i, j) is indeed maintained in the 
face of nonuniform coupling as well. Expressed in terms of the coupling, we 
have explicitly 

I 
C ( i -  1, i) = - ~ sinh(2J, 1/2) 

1 1 
C(i, i) = ~ cosh(2J/ 1/2) + ~ cosh(2Ji+ 1/2) 

t 
C(i+ 1, i) = - ~  sinh(2Ji+ i/2) 

(3.m) 
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A further step can now be taken, and that is to introduce a non- 
uniform external potential Ui (in units of kT) ,  in addition to the non- 
uniform coupling. We need as well the site transfer matrix 

and will assume that U s--> I as IJl ~ oo. Since the left- and right-hand Ts 
project onto the state co of (2.2), we can write 

1 
m = ~  (col H U/L+ 1,'2 Ico) (3.12) 

.S 

(a uj limit other than I requires a sech u to accompany each factor). 
Although -~, ~f(j)= ( a ; ) ,  and S(i, j )  cannot be solved explicitly in terms of 
the U/ (with the <//+ ~/2 fixed once and for all), the corresponding inverse 
problem, in which the 6(j)  are given rather than the Ui, yields fairly easily. 
Given j, we define the 2 x 2 matrix 

1 
Qi(o-, o - ' ) = ~ ( ~ 1  1] (Tk_v2UD Io-}<<r l~ (UkT~+,/~)Ico)(3.13) 

k < j  k > j  

where a, a ' =  +1 and denote the associated unit vectors as well. Then, it is 
clear that 

(<~1 L ,,~UjT;+,.~ I<~') Qi( a, a')= 1 
G.~7 

Z (o-t o-:L_ ,s~ QT~+ ,/~ Io-') Q/(o-, o-') = o-( j -  l) 
<""' (3.14) 

(al T; l/2a__U, Ti+l/2 [a') Qi(a, a')=6( j )  
es,o- '  

T, (al T~ ,/2U/T/+,/2a: I,~') Qi(a, a')=~7(j+ 1) 
o-,o" 

These four equations can now be solved in terms of Ji 1/2, us, J;+ ~,,2 to 
yield the four Q(a, a') in the form 

Qi(a, a ' ) =  ~176 f i  (e i - l l2 ,  w/ ,e i+, lZ , 6 ( j  1),~7(j),~7(j+l)) (3.15) 

where 
CJ/+ 1/2 W/ C - u i  

e i  + 1/2 = = 

But from the definition (3.13), Qj(a, a ')  is of rank 1, implying the relation 

Q.s( 1, 1 ) Q j( - 1, - 1 ) = Q.s( 1, - 1 ) Qi( - 1, 1 ) (3.16) 
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Substituting (3.15) into (3.16), we can solve in principle-- and in prac- 
t i c e - fo r  u:, in the form 

u: = g/(e/- ,/2, e/+ 1/2, cr ( j -  1 ), #(j), #(j  + 1)) (3.17) 

Equation (3.17) suffices to establish the short range of the direct 
correlation C(i, j). We recall that 

#(i) = - 0  In ~/Ou, (3.18) 
S( i, j)  = ~72 in ~/Oui Ou/= -O#( i)/Ouj 

so that 

C(i, j) = -aU:/##(i ) (3.19) 

According to (3.17), then, 

C(i, j) = 0 

as desired. 

when l i - j l  > 1 (3.20) 

4. NEXT NEAREST NEIGHBOR INTERACTIONS 

We proceed next to interactions of range 2. It is convenient to specify 
the lattice sites as - N , . . . , -  1, 0, 1,..., N, so that the field-free energy 
becomes 

N N 

flq~(~ N ..... o - : v ) = - J  ~, ~Tj I(~/-K E (Tj 2Gj (4.1) 
I N 2 N 

Stephenson's transformation to new independent spin variables 

z / = r  j = I - N ,  .... N (4.2) 

lets a u vary freely, yielding the partition function 

{z? 1 N 2 - N  

= 2  ~, [ e x p ( ~ J r l  N)IT('Cl 

=2{O) '1T2N-1  10)') 

where 

T ( r , r ' ) = e x p  Krr' +T J(~ + r') 

( ')  N' T'2 -- N ) ' ' "  T('CN 1, "ON) exp ~ J"c N 

(4.3) 

0), = (expt-,/21  
k exp(j/2) ] 
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Similarly, 

S(i,j)~,=~ air ~Nzk+K ~ rk ark), for i~<j 
{~k} 2 N 

= 2  ~ r~+ l%+2 ' "z j exp  J r k + K  ~ % ~G 
Irk } 1 N 2 - N / 

= 2  ~ } I e x P ( 2 J ' c l  N) I z i+ I  

o r  

S(i,j) 2=2(og'I TN-'+~(Tr), ' T  N Jlco') (4.4) 

where r is the diagonal matrix %. 
Equation (4.4) can now be analyzed without using the detailed struc- 

ture of T. Suppose that 2o and Vo are the maximal eigenvalue and 
corresponding eigenvector of T. Then, since 

(T/~)~o) N --~ IV0 ) ( V 0 [  (4.5) 

for large N (in standard Dirac notation), we have from (4.3) and (4.4) in 
the thermodynamic limit N ~ o% 

S(i,j)= (Vol (Tr/)oo) I~ ') tVo) (4.6) 

To invert (4.6), we take the lattice Fourier transform 

S(O) = ~ e!/~ j) (4.7) 
/ 

which works out to 

S(0) = (vol 2o/Tt- Tt/20 !%) (4.8) 
2o/Tr + Tz/2o - 2 cos 0 

Then, if "~1 and 2 2 a r e  the eigenvalues of Tz, and P~ and P2 are the 
corresponding orthogonal projections, so that 

T'c=21Pl+22P2, I=PI+P 2 (4.9) 

then (4.8) becomes 

2o/21 -- 21/2 o 
(Vo] 2o/21 + 21/2o -- 2 cos 0 

20/22 22/20 
P1 -f i~ It)O) 

20/22 + 22/20 - 2 cos 0 
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OF 

2 21 ~ f 2  0 22 ) 
~ + = - - 2 c o s 0 ) ~ + ~ - 2 c o s 0 , t o  S(O) 

21 20 22 0)  
P1 

/ 

cos0), o> 
\22 2 o / \ 2 1 + ~ - 2  

The coefficient of - 2  cos 0 on the right is 

(Vol ~ - ~  P:+\2z 2o] P2lv~ 

20 T: 
= (Vol ~ - T o  IVo) 

= (~ol ( T : )  ~ T -  T ' r :  lVo) = 0  

Setting 

(4.10) 

A = (Vol P l - P 2  [Vo) (4.11) 

and using P: + P2 = I, we  conclude that 

C(0) _ _ 1 _ ()~o/21 ~- ).1/2o - 2 cos 0)(20/22 ~- 22/20 - 2 cos 0) (4.12) 

s(o) (2o~/2: 22 - )., 22 /& ~) + (22/2, - 2,/2~) J 

containing at most second harmonics. In other words, C(i, j) is of range 2. 
On the other hand, the N N N  model with an arbitrary external field is 

not expected to have a short-range direct correlation. To see this, we 
extend the analysis of (3.11)-(3.20) by first building up the full Boltzmann 
factor using internal interaction third-rank tensors T(o, o', a") as well as 
external scalars U(o): 

e [3~= f i  Ti(ai_l, ai, 0"i+1) Ui(Gi) (4.13) 
i= -=oO 

N NN interactions can certainly be encompassed--although not uni- 
q u e l y - i n  this fashion. At fixed j, we then isolate that part of the 
probability kernel that contains no functions of crj_ 1, aj, or aj+ i, but for 
which o-/_3, : /  2 ..... a/+ 3 are fixed: 



60 Borzi, Ord, and Percus 

Q i(~ ' ,  <~"~'") 

1 E (Ti;I((Ti, (7i+1, ~i§ Ui§ 
~--- ~ {" �9 �9 O-i_ 4,O~/+ 4,... } - -oO 

x Tj_4(gj s, o j - 4 ,  0) Uj_4(o j 4) 

X Ti_3(0-1_4, 0", 0"') Ui_3(o" ) Vj 2(0"1 

X Ui+2(O "'v) Uj+3(~'t ) rj+3(~"~'"~i+4) Ti+4(G"<Ti+4@+5 ) 

x f i  (Ti+I((T,, (7i+i, (7i+2)Ui+I((Ti+I))] (4.14) 
i+4 

Just as in (3.14), the eight quantities 1, cT(j 3), ~7( j -2)  ..... ~7(j+3) can 
then be expressed in terms of the 16 elements Qj(~a', a"a"') and the 
unknowns u s_ 1, uj, Us+ 1. Since Qj(aa', a"a"')  is again of rank 1, as a 4 x 4 
matrix, only 2 x 4 -  1 = 7 of its 16 elements are independent. This, however, 
leaves 7 + 3 = 10 unknowns and only eight equations. Thus, we cannot in 
general solve for Ui in terms of the if(i) for I i - j l~<3 ,  and the 
corresponding proof of the short range of C(i, j) ,  as in (3.17) (3.20) does 
not go through. 

To be sure, the lack of a proof does not constitute a disproof. But we 
can be much more explicit. Suppose the lattice has nearest neighbor 
coupling - J ,  next nearest neighbor - K ,  and a constant external potential 
u, with corresponding Boltzmann factors 

e = e  ", w = e  J, w ' = e  K (4.15) 

Then the full Boltzmann factor can be written as the product of the third- 
rank factors 

T(~, a', rr")= e%'~'w '~" (4.16) 

However, it can also be written as a product of transfer matrices if, as 
suggested by (4.14), the indices correspond to successive pairs of spins, e.g., 
(4.16) is interpreted as the interaction of the pair (a, cr') with the pair 
(a', a"), with a vanishing weight unless the second spin of the left pair 
equals the first spin of the right pair. Equation (4.16) hence translates to 
the 4 x 4 transfer matrix 

l ++ + o+\  
+ -  0 e/ww' <w/w / 

_ - -  
-- -- 0 ww'/e w/ew J 

-- + \ l / e w w '  w'/ew 0 0 / 

(4.17) 
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and in this representation the spin a, entered on the left, becomes simply 

(i o o o) 
1 0 0 (4.18) 

a =  0 --1 0 

0 0 0 --1 

In the notation of (4.17) and (4.18), spin and pair spin averages 
proceed exactly as in the NN case. We assume periodic boundary con- 
ditions, subsequent to which the thermodynamic limit will be taken. Thus 

= Tr T x 

Z<a> = Tr Ti~rTN-:= Tr TNa 
(4.19) 

i<~j: ~<a(i) ~r(j)) = Tr TiaT/- :aT x / 

= T r  T u (/-i)GTJ i~7 

If 2 o is the maximum eigenvalue of T, with eigenvector v o and dual eigen- 
vector go, it follows as usual that 

< a > =  <~oJ a Ivo> 

<o-(i) o-( j)> = <Vol o(T/) ,o)  Ij il o- IVo> 
(4.20) 

In terms of the remaining eigenvalues 2~, c~= 1,2, 3, of T and 
corresponding eigenvectors v~ and dual eigenvectors t3~, we then have 

S ( i , j ) =  2 <Vol~ <t?~lolvo> 
~ = 0  

- <~ol o - I v 0 ) < e o l  a Ivo> 
' 

= 2 (Vo[ a Iv~) (v~l a IVo> (4.21) 

with Fourier transform 

3 1 - ( : ~ / : o o ) :  

S(0)=  ~ (~o1 o ]v~) 1 + (),~/2o)2-2()~/2o)cos 0 (~1 o I%> (4.22) 

Since the c~ = 0 term in (4.22) would vanish, except at 0 = 0, we have as well 

I - (T/2o) 2 
S ( 0 )  = <~oJ o 1 + (T/2o) 2 -2(T/2o)  cos 0 o IVo> (4.23) 
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or, alternatively, 

1 - (aTa/2o) 2 [Vo } (4.24) 
S(O) = (Col 1 + (aTa/2o) 2 -  2(aTcr/2o) cos 0 

Inversion to find C(0) is now tedious but straightforward, in version 
(4.22), (4.23), or (4.24). Using (4.24), for example, we expand out in a 
power series in cos 0: 

I 2aTa/)oo 7 i ~(0 )=  ~ (t~ol l - (aTa/ )~~ i j=o l+(aTa/2o)  2 + ~ o ) 2 J  lv~ (c~ (4.25) 

and compute C(0) = l/S(0) numerically as a power series in cos 0. If C(i, j) 
is of range r, C(0) will be a polynomial of degree r in cos 0, and to check 
this, one only needs to retain powers in (4.25) substantially larger than r in 
number. Doing so with various examples of (4.17), one finds indeed that 
the next-nearest neighbor interaction, with constant external field, does not 
in general have a truncated direct correlation. See Fig. 1 for a typical 
result: c has a distinct oscillating tail. 

cod-i) 

50  

J = -2.0 
I< = I .  0 

~ =  1.5 

, 

j - /  

-50 

Fig. 1. Direct correlation function for parameters J= -2.0, K= 1.0, u= 1.5. 
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5. LONGER RANGE INTERACTION 

The situation simplifies, in a sense, when one has third-neighbor 
interactions or higher. Now it is no longer necessary to apply an external 
field to break the short range of the direct correlation. This is demonstrated 
by extending the formalism of (4.17)(4.25) in the obvious way, 
necessitating 2 p • 2 p matrices for interactions of range p. In fact, it is 
helpful to process the formalism a bit to recover the reduced pattern of 
(4.8), either by extending the Stephenson approach or more directly, as 
follows. 

To start, we choose the transfer matrix between successive p-tuplets of 
sites, so that just two elements in each row or column are nonvanishing. 
Then the 2P-dimensional index space of (o-1,..-, O-p) configurations is ordered 
by having the first 2 p - I  indices allocated to al = +1, with any allocation 
of the remaining species; the second block of 2 p 1 indices is obtained by 
reversing all spins of the corresponding first-block entries. For the 
Boltzmann factor in T(aj,..., o-p; a'l ..... a'p) we may choose the interaction 
energy of a~ alone with all a~- It is readily seen that in the absence of an 
external field, T and o- (the left spin insertion) take the compartmental  form 

where A and B have no nonvanishing rows in common. Now only T and 
aTa appear in the ensuing computation, and both have the spaces {(~")} 
and {( "~)} as invariant subspaces, 

((A+B) u) 
T ( ~ )  = ( A  + B )  u ' 

( (A-B)  u) 
~To-(".)  = ( A  - 8 )  u ' 

Hence 

(A - B) u 
T( ~,)= _(A_B) uJ 

(A+B).) 
aTa( ",)= _(A + B) u] 

(5.2) 

Trf(T, aTa)=Tr f (A+B,A-B)+Tr f (A-B ,A+B)  (5.3) 

But only expressions of the form Tr TU(crTa) b occur, and of course 
Tr T~(aTo-)b= Tr(aTa) ~ T b, so that 

Yr T~(aTa) b = 2 Yr(A + B) a (A - B) b (5.4) 

Finally, since A and B have no nonvanishing row in common, we can write 

A - B = r(A + B) (5.5) 

822/46/1-2 5 
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for a suitable spin matrix (diagonal, with _+ l's)~. We conclude that 

Tr Ta(crT~7) b = 2 Tr T'"(~T') b (5.6) 

where T' = A + B and r are 2 p l x 2 p i matrices. 
Equation (4.24) can now be taken over directly: 

1 -- (TT'/20) 2 
S (0 )=  (v0l 1 + (zT'/2o)2-2(rT'/2o)cos 0 iv~ (5.7) 

and analyzed similarly as a function of cos 0. I fp  is not too large, little sub- 
tlety is required. We rewrite (5.7) as 

~(0) = <0ol I1 - (~T'/&) 2] Adj [(1 + rT'/2o) 2 - 2(rT'/2o) cos 0] IVo> 
Det[1 + (rT'/2o) 2 - 2(~T'/,~o) cos 0] 

P2p ' 1(cos 0) 
_ ( 5 . 8 )  

Q 2 p - l ( C O S  0 )  

a ratio of polynomials of indicated degree in cos 0. Here Adj A stands for 
the matrix of cofactors of A. We then ask whether 

~(0) = Q2p-,(cos 0)/e2,-~_ 1(cos 0) 

is also a polynomial, which in principle could be of degree 2 p-  t. In any 
event, C(0) and hence C( j - i )  to any required degree of accuracy are 
readily computed, resulting in the aforementioned conclusion that field-free 
Ising lattices with longer than N N N  interaction do not in general have 
short-range direct correlation. See Fig. 2 for a typical example: here c has 
an exponential tail, which, however, decays very rapidly. 

rZj- t) 

\ 
o 

-I 

-2 

-3 

-4  

-5 

J = i  
K = l  
L.= I 

v -  a 6 9 j .  i 

J~ 

I 

Fig. 2. Direct  cor re la t ion  function for pa ramete r s  J = 1.0, K = 1.0, L = 1.0. 
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An obvious question in the context of this survey is whether there are 
special longer range interactions for which the C(i, j) are short range. At 
least three possibilities exist. The first is that in which the range is extended, 
but only a few of the interactions are nonvanishing. If matters are so 
arranged that the lattice A breaks up into noninteracting sublattices {A~}, 
each with short-range interaction, then matters simplify dramatically: sites 
from distinct sublattices are then independent--a  trivial observat ion--  

S(c~i, flj) = ~ S ~ (  i, j)  (5.9) 

and correspondingly 

C(c~i, flj) = 6 ~ S  ~ (  i, j)  (5.10) 

Thus pure second-neighbor interaction with an arbitrary external field has 
short range C, as does second- plus fourth-neighbor interaction in the 
absence of an external field. 

Are there nondecomposing interaction patterns for which C is short 
range? There are certainly hints from (5.8) that special cases of this type 
exist, but they have not yet been categorized. But several periodically non- 
homogeneous special cases with finite range C have been found and will be 
reported in due course; they typically involve interacting clusters of sites. 

A third category is that of interactions that are strictly hard core 
exclusion, of any range. Here, it is easy to show by other methods (5) that 
the direct correlation has precisely the range of the core, and in the 
presence of an arbitrary external field. Indeed, the hard core makes sense 
only in the context of a lattice gas, rather than a spin model, and so even 
the field-free lattice gas maps into an Ising model with constant external 
field. 

6. C O N C L U S I O N  

We have seen that the strictly finite-range direct correlation function, a 
striking aspect of the nearest neighbor Ising model, extends to a few more 
or less obvious longer range interaction cases, but not beyond. Thus, it 
does not mimic in a consistent way the short range of the interaction, as 
Ornstein and Zernike hoped it would. There are of course other ways of 
satisfying the primitive result, the set-set direct correlation function of 
Green (6) being one that has not been extensively investigated. It is also true 
that other modes of extension, e.g., to Bethe lattices, are called for, and in 
fact it has been shown (y) that the finite range of C for hard cores in an 
arbitrary external field for Ising lattices--extends to this wider domain. It 
certainly is not known whether analogous results obtain for any true higher 
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dimensional lattice. Thus, there is still work to be done at the 
categorization level before proceeding to deeper and more incisive descrip- 
tions of the microscopic correlation structure of lattices. 
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